Identification of germline variants for hereditary cancer using a comprehensive NGS Panel

Geoff Woodward¹, Michael Parks¹, Karen Cook¹, Sam Clokie¹, Sam Butler², Yvonne Wallis²

1, Nonacus Ltd, The BioHub, Birmingham Research Park, UK; 2, West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, UK.

Introduction

- Understanding the genetic basis of cancer risk is widely accepted.
- Hereditary cancer accounts for approximately 5-10% of all cancers.
- The use of targeted NGS-based multigene panels to provide the comprehensive analysis of cancer susceptible genes has proven to be a clinical viable option.
- However, many panels struggle to identify key hereditary cancer copy number variants (CNVs), such as single exon BRCA1/2 alterations or those CNVs involved in Lynch syndrome.
- The Cell3 Target Hereditary Cancer Panel (HCP) allows the comprehensive analysis of SNV and CNVs linked to inherited cancer syndromes, providing a simple streamlined tool for cost-effective cancer risk profiling.

Methods

- 25ng of genomic DNA from 68 anonymised patient and 2 reference DNAs.
- Libraries were prepared using the the Nonacus Cell3 library prep kit. Sequenced on a MiSeq to a mean coverage of 100x.
- Mapping was performed using Sentieon[®] accelerated bwa-mem with GRCh38 reference Human Genome
- Germline SNV/INDEL calling was performed using Sentieon[®] HaplotypeCaller
- Copy Number alterations were identified with cn.mops and ExomeDepth. A panel of normal samples was created using 50 samples with no reported familial conditions.

Panel Design

 The Cell3 Target HCP comprehensively covers 129 genes with know associations to hereditary cancers.

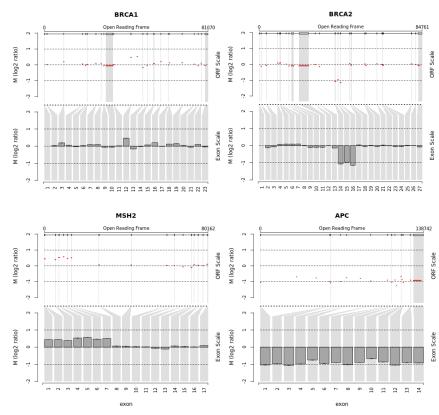
- Cell3 Target HCP was validated on reference DNAs (4 replicates)
- Cell3 Target HCP recall on reference DNA across 437 SNVs
- SNV 99.7%
- INDEL 100%

CNV	_Genotypic Sex	CNV Type	Recall	Position
Copy normal	male	copy neutral	100%	100%
MSH2 deletion exons 1-6, heterozygous	male	multi-exon deletion	100%	100%
MSH2 deletion exon 7, heterozygous	male	single exon deletion	100%	100%
MSH2 deletion exons 1-2, heterozygous	female	multi-exon deletion	100%	100%
MSH2 deletion exon 1, heterozygous	male	single exon deletion	100%	100%
MLH1 exon 13 amplification (3+copies)	female	multi-exon amplification	100%	100%

Table 1. CNV Recall rate for copy number alterations in reference controls

The Cell3 Target HCP out-performs leading commercial alternative.

Key Quality Indicator	Nonacus HCP	Competitor 1
Number of Genes	129	113
MB required for mean 100x coverage	78.1MB	116.6MB
Percent coverage >30x	98%	96%
Percent on bait	77.6%	37.0%
Percent on or near bait	91.0%	61.5%
Percent Duplication	3.0%	9.0%
SNV Recall	99.7%	98.1%
Indel Recal	100.0%	97.2%


Table 2. Sequencing metrics for the Nonacus Cell3 Target HCP and the leading commercial alternative.

Clinical SNV Validation

- Clinical utility was assessed using 68 patient samples with orthogonal data
- SNV recall on clinical samples 100%, across a wide range of alteration types, including small and large(>10bp) indels.
- MSH2 c.942+3A>T can be genotyped directly using Cell3[™] Target HCP, avoiding the need for Sanger sequencing.

ID	Gene	HGVS coding	HGVS protein	Genomic position
22	BRCA1	c.1175_1214del	p.Leu392fs*5	chr17:43094317
23	BRCA1	c.1175_1214del	p.Leu392fs*5	chr17:43094317
64	MSH2	c.942+3A>T	p.?	chr2:47414421
65	PMS2	c.736_741delinsTGTGTGTGAAG	p.(Pro246Cysfs*3)	chr7:5997389
66	MLH1	c.1946dupC	p.(Leu650Phefs*14)	chr3:37048561
67	MSH2	c.1213_1217dup	p.(Leu407Thrfs*7)	chr2:47429877
68	MSH6	c.3562_3563del	p.(Ser1188Tyrfs*5)	chr2:47805623

Table 3. Selected SNVs/indels showing the range of variants detectable by the Cell3 Target HCP.

CNVs

Clinical Copy Number Variation

 Cell3 Target HCP accurately identifies CNVs from single exons to whole genes in key cancer syndrome susceptibility genes.

• CNV detection in 60 clinical samples : • Sensitivity 96.6% • Specificity 99.6%

Figure 1. Selected copy number profiles for patients with BRCA1, BRCA2, MSH2 and APC

Summary

• The Cell3[™] Target HCP shows high concordance with orthogonal sequencing and MLPA data.

• Reduces the need for MLPA for identification of CNVs.

 Provides ~33% reduction in sequencing costs compared with comparable commercial alternatives (32 samples per MiSeg V3).

 Cell3TM Target Hereditary Cancer Panel provides a robust, low cost, automatable workflow for the detection of variants associated with hereditary cancer syndromes.

